
International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

 Dynamic Heuristic Approach of
An Acceptance Test Data Generation with

Behavior Driven For Selenium Test

Vivek Kaushikbhai Shah

Abstract- Automated acceptance testing is a quite recent addition to testing in Dynamic Heuristic Approach holding great promise of improving
communication and collaboration. This paper summarizes existing literature and also presents a case study from industry on the use of automated
acceptance testing with Easyb. The aim of this paper is to establish one of Selenium’s stated goals is to become the de facto open-source tools Groovy

and easyb. In particular interest to the Dynamic community is that it offers the possibility of test-first design of web applications, Pass/Fail result for
customer acceptance tests, and an automated regression test bed for the web tier.The process of risk analysis with this tools are continuous and applies
to many different levels, at once identifying system-level vulnerabilities, assigning probability and impact, and determining reasonable mitigation

strategies. By considering the resulting ranked risks, business stakeholders can determine how to manage particular risks and what the most cost-
effective controls might be that were determine effectiveness of acceptance tests.

————————————————————

1 Introduction
Automating acceptance tests is one of the traditional

problems facing software development projects. Whereas

automated UI and Unit testing has achieved deep traction,

in Dynamic and non-Dynamic projects alike, acceptance

testing frequently is still done manually. In recent years,

tools such as easyb and groovy helped make it easier to

automate acceptance testing of software applications.

However, web applications have long remainedDifficult to

test because of multitier architecture, multiple browsers,

and web technologies such as JavaScript.It is very

expensive in manual testing. Selenium, originally

developed by thought Works, has gained attention as a

possible functional and acceptance problem of automated

testing for Web Applications. We have been using Selenium

on five different web browsers. In addition, we have used

Easyb is a behavior driven development framework for the

Java platform. By using a specification based Domain

Specific Language; easyb aims to enable executable, yet

readable documentation.Easyb specifications are written in

Groovy and run via a Java runner that can be invoked via

the command line. What's more, easyb supports a few

different styles of specifications ranging from RSpec's it to a

story based DSL with givens, when and then. In dynamic

languages, Groovy is a dynamic language for the Java

Virtual Machine builds upon the strengths of Java but has

additional power features inspired by languages like

Python, Ruby and Smalltalk makes modern programming

features available to Java developers with almost-zero

learning curve supports Domain-Specific Languages and

other compact syntax so your code becomes easy to read

and maintain makes writing shell and build scripts easy

with its powerful processing primitives, OO abilities and an

Ant DSL increases developer productivity by reducing

scaffolding code when developing web, GUI, database or

console applications simplifies testing by supporting unit

testing and mocking outofthebox seamlessly integrates

with all existing Java classes and libraries compiles straight

to Java byte code so you can use it anywhere you can use

Java.

1.1 Background

Our teams practice a dynamic Heuristic language; we are

committed to writing acceptance tests in Bit bucket before

beginning development on stories. Passing these tests

signals completion of a story, so we write functional tests

that capture these acceptance criteria. For a web

application, a functional test could be simply that a user

manually navigates through the application to verify the

application behaves as expected. We try to automate our

application in acceptance tests whenever we can. And our

holy groovy is to be able to write the tests before

development, so that the development team can have a

runnable verification that the story is complete. Our team

came to Selenium after using several other tools to

automate web testing. We tried the open source tools

Groovy and easyb them to be sufficient, as they could not

handle most instances of in-page JavaScript. The JavaScript

problem is solved by the behavior driven development and

record-and-play of test scripts and also runs tests directly in

a browser.

1.2 Selenium with Easyb

Since Selenium was introduced a few years back, it has

continued to wow developers with how easily a user

acceptance test can be knocked outsimply fire up an

instance of a Selenium server in the background and then

either write a table. Web driver style testing is particularly

powerful as you have full access to programming

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 2
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

languages for instance, with RC, you can write a functional

web test in Java by leveraging a framework like JUnit or

TestNG. But what’s often lacking with testing frameworks

is a more natural way of expressing behavior or indeed,

scenarios and stories. For instance, a user acceptance test is

really a scenario a user logs into a website, purchases an

item, pays, and logs out. That was a sunny day scenario

there are other scenarios that deal with various other paths

user fails to pay, credit card was invalid, etc. All of these

scenarios are logically a storya story about buying

something. Using a standard scenario language, one can

more specifically write a scenario (in a story regarding a

website Using a standard scenario language, one can more

specifically write a scenario (in a story regarding a website

for race registrations) like so:

• Given a user is on the Dachisgroup login page

• When someone fills username and password in the

report who has signed up for home pages

• That is a happy day scenario isn’t it? One particular

negative path would be:

• Given a user is on the Login page

• When someone fills username and password in the

report who hasn’t signed up for Home pages.

Using easyb then, one can create a story file, which contains

two scenarios the file could be called Login.

Story and will have two scenarios:

Scenario "a valid person has been entered", {}

Scenario "an invalid person has been entered", {}

1.3 Getting Started

Selenium is easy to setup in any computer, although there

is a catch. The basic installation of Selenium must be hosted

by the same web server as the Application under Test

(AUT) for acceptance testing. In advanced level of easyb

comes with a command line runner that takes the name of a

particular behavior or story you wish to run. You can

optionally pass in a few different flag options to output

various report formats as well.

c:>javaorg.easyb.BehaviorRunnermy/path/to/MyStory.groo

vy

2 Literature Survey
2.1 Selenium Open Source Tool

Selenium is a set of different software utensil each with a

different approach to supporting test automation. Most

Selenium QA Engineers focus on the one or two utensil that

most meet the needs of their project, however learning all

the tools will give you many different options for

approaching different test automation problems. The entire

suite of tools results in a rich set of testing functions

specifically geared to the needs of testing of web

applications of all types. These operations are highly

flexible, allowing many options for locating UI elements

and comparing expected test results against actual

application behavior. One of Selenium’s key features is the

support for executing one’s tests on multiple browser

platforms.

2.2 Easyb for BDD

You have explored the language's approach to BDD and

seen how it helps you think about your system as a

collection of behaviors across various levels of granularity.

By keeping the focus on behaviors instead of tests for

specific classes and methods, BDD and easyb encourage

you to write tests that are more descriptive of what the

system should do and less tightly coupled to particular

implementations.Additionally, easyb's approach for

capturing user stories is less restrictive than the

programmer oriented syntaxes of comparable tools. Easyb

aims to stay out of the way of the story writing process so

that the center of attention is on the conversation taking

place, not on the tool that is being used to capture that

conversation. Furthermore, easyb does make it easy to bind

these expressions of behavior to the system under test as a

mechanism for validating the conversations. As easyb

draws closer to its 1.0 launch, now is a great time to give it

a test drive and see for yourself how BDD and easyb can

help you build better systems that more closely match your

customers' needs.

2.3 Value of Heuristic with Behavior Application

In software testing, loops are important spot for error

detection. Execution of program spend large amount of

time in loops. Without covering Xpaths going through

loops we cannot get better code coverage. Most of the

mistakes are made in loops of programs. Infinite loop

creates lots of problem in detecting the errors. In fact, Value

of Heuristic is possible to factorization of risk in Dachis

application with different behavior. It is impossible to

detect all kinds of infinite looping automatically. Test data

generation is more challenging if loops are nested.

Automated test data is generated using symbolic value,

actual value, and combining both. One of the main

problems in test data generation is detection of infeasible

path. Statistics reveals that many paths of a program can be

infeasible. The behavior execution method is simpler to

execute any scenarios. Infeasible path detection due to non-

availability of efficient constraint solver and path feasibility

detector.

2.4 Test First?

Selenium behavior tests are easy to write, a tester or

analyzer can write the shell of Selenium with easyb test

very quickly without knowing what the implementation

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 3
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

will be. Although we hoped that we could code to these

tests, the test would seldom turn Pass after development.

The reasons for this were usually minor: a field wasn’t

naturally identified by the name or Xpaths the tester chose,

or the test command used needed to be waiting Ajax or

click event on instead of just click, etc. As a result, we did

not usually require that the developer code to the test, and

our process of writing the test before development (for its

acceptance value), but getting the test behavior pass

immediately after development, emerged.

2.5 IDs, Xpath & Acceptance

The project we used Selenium for was a JAVA project,

which automatically assigns IDs for every element on the

page. However, when we switched to JSP-based

applications, the IDs were only present when the code

specified it. Selenium supports several different techniques

for identifying page, including names, IDs, Xpath, Element

CSS and more. For the most part it was not difficult to find

unique identification for an element, but occasionally

parsing the HTML was tedious. Some tools we found like

fire finder in Firefox browser valuable for this purpose

were the DOM inspector, Xpath hacker. Selenium IDE is

even better at this task. However, frequently these tools do

not find the “easiest” way. This would frequently

contribute to longer-running tests, which was one of the

most significant problems we encountered using Selenium.

In general, using Xpath expressions tends to make tests

take much longer to run, especially in Internet Explorer. So

we used IDs or names where they existed, and went out of

our way to add them into our JSP code when possible. Due

to the processing and memory needs of browsers running

Selenium, as our suites grew larger and contained more

tests, we needed to have a more robust environment. For

example, one suite running on a VPNVista600 MHz

machine with 1GB of RAM took over 1hr and 40Minutes to

run. Upgrading our test environment to a VPN to Wing 7, 3

GHz machine with 2GB RAM took the time required down

under 30Minutes.

2.6 Ability to test the entireacceptance Requirement

We have reused a partial number of testing tools in the past

and Selenium with easyb is among the best, if not the best,

at being able to perform every browser for acceptance

testing action that a user can perform, including such

events as on Mouse Over and on Key Press acceptance

testing. In addition, because Selenium allows users to write

their own extensions, it is easy to create custom actions that

do sophisticated manipulations. There are some JavaScript-

restricted actions, such as downloading or uploading files,

that are not supported, but even for creating custom

methods of supported these actions have some

workarounds uploading and handling on window. Easyb

and groovy are the techniques. One recent addition to the

Selenium world, Selenium Remote Control, addresses some

of these issues by allowing the user to write Selenium

acceptance tests in other programming languages like

ASP.Net, Perl and others, thus leveraging the power of

Selenium within more traditional automated acceptance

tests.

3 Running Easyb Plugin in Eclipse and Writing

Effective Test
We have created an easyb plugin for Eclipse that makes it

super easyb to work with easyb specifications and to run

them. Installing the plugin works as follows:

• Go to the Help menu and then select Software

Updates...

• Hit the Add Site. button and in the resulting dialog, for

the location type:

http://easyb.googlecode.com/svn/trunk/eclipse-

plugins/org.easyb.eclipse.updatesite/

• Hit the Ok button

• Select the easyb Eclipse Update Site in the list box and

then hit the Install... button

For writing effective test: BDD with dynamic approach

principles support the notion of stories quite nicely-- you

can think of a story as narrative between a stakeholder and

development (almost like a use case). In short, think of a

story as a description of a requirement, which has an

associated benefit and criteria for validation. Stories can be

made up of scenarios that group specifications. The

specifications are essential-- they are essentially steps that

are friendly to read. They are:

• Given (a context)

• When (something happens)

• Then (something else happens)

Stories in action: The default convention for stories in

easyb is to place each story in a file ending with Login.

Story. So if you have story regarding shipping calculations,

for example, you'd have a file named Login. Story. The

code below shows a story in easyb in action-the code has

two scenarios which reside in a story file named.

EmptyStack.dachisgroup.story.

import.org.easyb.bdd.dachisgroup

scenario "null is pushed onto empty stack",

{

given "an empty stack",

{

stack = new Stack ()

}

when "null is pushed",

{

push null =

http://easyb.googlecode.com/svn/trunk/eclipse-plugins/org.easyb.eclipse.updatesite/
http://easyb.googlecode.com/svn/trunk/eclipse-plugins/org.easyb.eclipse.updatesite/

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 4
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

{

Stack. Push (null)

}

}

3.1 Our Approach: Dynamic Heuristic

 Steps of Dynamic Heuristic Approach:

[1] SRS:

A software requirements specification (SRS) is a

comprehensive description of the intended purpose and

environment for software under development. The SRS

fully describes what the software will do and how it will be

expected to perform.

[2] Design:

Software design is a process of problem solving and

planning for a software solution. After the purpose and

specifications of software are determined, software

developers will design or employ designers to develop a

plan for a solution. It includes low-level component and

algorithm implementation issues as well as the

architectural view.

[3] Risk Analysis:

Risk analysis is a technique to identify and assess factors

that may jeopardize the success of a project or achieving a

goal. This technique also helps to define preventive

measures to reduce the probability of these factors from

occurring and identify countermeasures to successfully

deal with these constraints when they develop to avert

possible negative effects on the competitiveness of the

company. Reference class forecasting was developed to

increase accuracy in risk analysis.

[4] Risk management:

The process of identification, analysis and either acceptance

or mitigation of uncertainty in investment decision-making.

Essentially, risk management occurs anytime an investor or

fund manager analyzes and attempts to quantify the

potential for losses in an investment and then takes the

appropriate action (or inaction) given their investment

objectives and risk tolerance.

[5] Refactorization of Risk:

Refactorization is to factor out repeated coding patterns

into new abstractions and thus avoid their repetition

resulting in less code to maintain and finite substitute

implementation for any types of risks. We have refectories

all risks one by one. Major part of risks included in this part

of step.

[6] Development:

Term "software development" may be used to refer to the

activity of computer programming, which is the process of

writing and maintaining the source code, but in a broader

sense of the term it includes all that is involved between the

conception of the desired software through to the final

manifestation of the software, ideally in a planned and

structured process

[7] QA/QC:

Quality assurance and Quality control has been re-framed

and re-worded by different quality experts from time to

time. It also varies from industry to industry.

[8] Deployment:

Software deployment is all of the activities that make a

software system available for use. The general deployment

process consists of several interrelated activities with

possible transitions between them. These activities can

occur at the producer site or at the consumer site or both.

Because every software system is unique, the precise

processes or procedures within each activity can hardly be

defined. Therefore, "deployment" should be interpreted as a

general process that has to be customized according to

specific requirements or characteristics.

[9] Product Release:

Product Release term used when software is ready for or

has been delivered or provided to the customer.

3.2 Writing our own Framework:

WebDriver uses a different underlying framework from

Selenium’s JavaScript Selenium-Core. It also provides an

alternative API with functionality not supported in

Selenium-RC. WebDriver does not depend on a JavaScript

core embedded within the browser; therefore it is able to

avoid some longrunning Selenium limitations.

WebDriver’s goal is to provide an API that establishes:

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 5
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

• A welldesigned standard programming interface for

Web-app testing.

• Improved consistency between browsers.

• Additional functionality addressing testing problems

not well-supported in Selenium- 1.0.

• Framework provides Multi-browser testing including

improved functionality for browsers not well-

supported by Selenium-1.0.

• Handling multiple frames, multiple browser windows,

popups, and alerts.

• Page Navigation.

• Drag-and-drop.

• AJAX-based UI elements.

4 Putting Acceptance Selenium Test into

Dachisgroup:
After writing acceptance tests to have a successful

implementation for our Dachisdev projects, we found that

there were a few recurring critical points:

• Keeping the tests organized was a risk analyze;

• Writing the tests in JAVA was unnatural and;

• Using variables, Xpaths across all multiple tests was

tricky.

We realized early on that using variables would prevent us

from having to change every test when a field ID, metrics

would change, but it was tricky enough that we weren’t

doing it. By leveraging the power of our project of

Dachisgroup. A Dachisgroup is a collaborative web

environment where any user can change the pages. It is our

company’s standard project of brand’s social performance

center where we capture our companies’ entire competitor,

brand and manage portfolio.

4.1 Groovy & Easyb

Groovy simplifies easyb testing, making it Groovier, in

several ways, including:

• Easyb is built into the groovy runtime, so you can

script easyb tests for your Groovy and Java classes

using Groovy syntax.

• Groovy provides many additional easyb assertion

statements like, should, should be and should not be

etc...

• Groovy unit tests are easily scriptable with Ant /

Maven

4.2Implementing Easyb and Groovy

Groovy is like a super version of Java. It can leverage Java's

enterprise capabilities but also has cool productivity

features like closures, builders and dynamic typing. If you

are a developer, tester or script guru, you have to love

Groovy. Running application with easyb and groovy.

4.3 Eclipse behavior

It’s a behavior of Dachisgroup application.

5 Conclusion
Risk analysis is, at best, a good general-purpose yardstick

by which we can judge our security design’s effectiveness.

Because roughly 50 percent of security problems are the

result of design flaws, performing a risk analysis at the

design level is an important part of a solid Software

security program. Taking the trouble to apply risk-analysis

methods at the design level for any application often yields

valuable, business relevant results. The process of risk

analysis is continuous and applies to many different levels,

at once identifying system-level vulnerabilities, assigning

probability and impact, and determining reasonable

mitigation strategies. By considering the resulting ranked

risks, business stakeholders can determine how to manage

particular risks and what the most cost-effective controls

might be.Via using Dynamic heuristic approach risk of the

application is well balanced in acceptance testing. It

handles many of the problems very well and doesn’t add

International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 6
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

significant new ones. The active and growing communities

of users have Easyb and groovy to fill a need for a variety

of different user types and widespread adoption seems

imminent. Selenium is certainly worth evaluating for

anyone looking to add a powerful web acceptance testing

tool to their toolkit.

6 Acknowledgement
We would like to thank Prof. M. B. Chaudhari for his

valuable feedback and support in reviewing this paper

throughout its evolution. Additional thanks to Prof. B. V.

Buddhdevfor his encouragement and advice.

7References
[1] Software Engineering & Methodology:

A Practitioner’s Approach, 7/e

By, Roger S. Pressman

[2] Dachisgroup:

(Website: http://www.staging.dachisdev.com)

[3] Social Business Index:

(Website: http://www.socialbusinessindex.com)

[4] Selenium:

(Website: http://www.openqa.org/selenium)

[5] Easyb:

(Website: http://www.easyb.org/)

[6] Groovy:

(Website: http://groovy.codehaus.org/)

[7] Risk Analysis in Software Design

(Published By the IEEE Computer Society, 1540-

7993/04)

http://www.staging.dachisdev.com/
http://www.socialbusinessindex.com/
http://www.openqa.org/selenium
http://www.easyb.org/
http://groovy.codehaus.org/

